变参式 Tikhonov 正则化图像复原算法

阎雪飞 许廷发 白廷柱

(北京理工大学光电学院 光电成像技术与系统教育部重点实验室,北京 100081)

摘要 正则化方法是近年来流行的图像复原算法。研究了周期边界条件下 Tikhonov 正则化的预处理共轭梯度算法,提出了新的预处理矩阵和变化正则化参数的方法。正则化参数先取较大值,抑制复原图像中的噪声,得出收敛的结果来修正初始梯度;再取较小值,用来增强复原图像中的细节。对一组图像复原基准问题的实验结果表明,与 当前流行的正则化图像复原算法比较,该算法的图像复原效果更佳。

关键词 图像处理;图像复原;周期边界条件;Tikhonov正则化;变正则化参数 中图分类号 O436 **文献标识码** A **doi**: 10.3788/LOP50.051001

Varying-Parameter Tikhonov Regularization Image Restoration

Yan Xuefei Xu Tingfa Bai Tingzhu

(Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

Abstract Regularization is popular in image restoration recent years. We analyze the preconditioning conjugate gradient method with Tikhonov regularization under the periodic boundary conditions, and propose a new preconditioning matrix and the varying regularization parameter method. At first, we choose a larger regularization parameter to restrain the noise in the restored image, get a convergent result to modify the initial gradient. After that, we choose a smaller one to increase the details. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm performs favorably in comparison with several state-of-the-art regularization image restoration algorithms.

Key words image processing; image restoration; periodic boundary condition; Tikhonov regularization; varying regularization parameter

OCIS codes 100.2000; 100.3190; 100.4145

1 引 言

图像复原是图像处理中最早、最经典的反问题之一,可以追溯到 20 世纪 60 年代。一般来讲,成像系统 可以被模型化为一个线性、空间不变性系统。由此,成像过程可认为是物体与退化函数的卷积,想得到原物 体的信息,理论上进行反卷积运算即可。然而,反卷积运算是一个病态的反问题。流行的求解方法是正则化 方法。

针对周期边界条件下的图像复原问题,本文提出了变化正则化参数的 Tikhonov 正则化改进方法。讨论了不同的点扩展函数(PSF)情形下,不同的退化噪声图像的图像复原问题。进行了仿真实验,取得良好的客观评价结果。

收稿日期: 2012-11-30; 收到修改稿日期: 2013-02-22; 网络出版日期: 2012-04-12

基金项目:国家 973 计划(2009CB72400603)、国家自然科学基金科学仪器专项(61027002)和国家自然科学基金(60972100)资助课题。

作者简介: 阎雪飞(1979—), 男, 博士研究生, 主要从事图像复原方面的研究。E-mail: yxfamyself@sina. com

导师简介:许廷发(1968—),男,教授,博士生导师,主要从事光电成像探测与识别、目标跟踪、光电测量等方面的研究。 E-mail: xutingfa@163.com

2 模糊图像退化过程

设 f(x,y) 为原始图像,大小为 $A \times B$;h(x,y) 是成像系统的点扩展函数;g(x,y) 为经成像系统生成的 退化图像,是可以获得的观测数据样本;n(x,y) 为随机高斯白噪声。在几何光学条件下,对于线性移不变成 像系统,模糊图像的退化过程可以表示为^[1,2]

$$\boldsymbol{g}(x,y) = \boldsymbol{f}(x,y) * \boldsymbol{h}(x,y) + \boldsymbol{n}(x,y).$$
⁽¹⁾

在数字图像处理中,一幅图像常常用矩阵或者由矩阵字典顺序展开所得的列向量来表示。于是,图像退 化过程的离散模型表示如下:

$$\mathbf{g} = \mathbf{H}\mathbf{f} + \mathbf{n},\tag{2}$$

式中g, f, n为 $AB \times 1$ 的列向量,由大小为 $A \times B$ 的函数矩阵g(x, y), f(x, y)和n(x, y)的各列按字典顺序 展开而成。模糊矩阵 H 是一个表示卷积运算的线性变换。

3 Tikhonov 正则化算法

由于模糊矩阵 H 常常是奇异的,或是病态的,所以从 g 恢复 f 是一个病态的反问题。对其求解的典型 方法是通过求解 L, 范数的最小值^[3]

$$\arg\min\left\{\left\|\boldsymbol{g}-\boldsymbol{H}\boldsymbol{f}\right\|_{2}^{2}+\alpha\left\|\boldsymbol{f}\right\|_{p}\right\},\tag{3}$$

式中 $\alpha > 0$ 称为正则化参数。 $\|f\|_{\rho}$ 称为正则化函数,有多种选择。取p = 1时,得到 L_1 范数正则化函数^[4]。 取 $\|f\|_{\rho} = V_t(f)$,即全变分范数,得到全变分范数正则化函数^[5]。取 $\|f\|_{\rho} = \|Df\|_{2}^{2}$,得到 Tikhonov 正则 化函数,**D** 为某种特殊矩阵^[6]。

4 Tikhonov 正则化预处理共轭梯度算法

对于 Tikhonov 正则化函数,求解相应的欧拉方程,得到

$$f = \frac{\boldsymbol{H}^{\mathrm{T}}\boldsymbol{g}}{(\boldsymbol{H}^{\mathrm{T}}\boldsymbol{H} + \alpha\boldsymbol{D})}.$$
(4)

Ŷ

$$\boldsymbol{M} = \boldsymbol{H}^{\mathrm{T}} \boldsymbol{H} + \alpha \boldsymbol{D} \,, \tag{5}$$

$$\boldsymbol{b} = \boldsymbol{H}^{\mathrm{T}}\boldsymbol{g},\tag{6}$$

则(4)式可改写为线性方程

$$Mf = b. (7)$$

在图像处理问题中,模糊矩阵 H 往往很大。(7)式是一个超大的线性方程,直接求解需要求解 M 的逆 矩阵,数学计算量非常大,不容易实现。因此,常用的方法是运用迭代求解的方法,来求解近似解。预处理共 轭梯度(PCG)算法是非常适合编程计算的有效方法^[7]。

对于线性方程 Mf = b,给定预处理矩阵 N,预处理共轭梯度法可以表示为:

$$k = 0, \tag{8}$$

()

$$\mathbf{f}_0 = 0, \tag{9}$$

$$\boldsymbol{r}_{0} = \boldsymbol{M} \boldsymbol{j}_{0} = \boldsymbol{b}, \tag{10}$$

$$\boldsymbol{z}_0 = \boldsymbol{N} \cdot \boldsymbol{r}_0, \qquad (11)$$

$$\boldsymbol{p}_0 = -\boldsymbol{z}_0, \qquad (12)$$

$$\boldsymbol{\delta}_0 = \langle \boldsymbol{r}_0, \boldsymbol{z}_0 \rangle. \tag{13}$$

开始 PCG 迭代过程:

$$\boldsymbol{h}_{k} = \boldsymbol{M}\boldsymbol{p}_{k}, \qquad (14)$$

$$\boldsymbol{\tau}_{k} = \frac{\boldsymbol{\delta}_{k}}{\langle \boldsymbol{p}_{k}, \boldsymbol{h}_{k} \rangle}, \qquad (15)$$

$$\boldsymbol{f}_{k+1} = \boldsymbol{f}_k + \boldsymbol{\tau}_k \boldsymbol{p}_k, \qquad (16)$$

051001-2

$$\boldsymbol{r}_{k+1} = \boldsymbol{r}_k + \boldsymbol{\tau}_k \boldsymbol{h}_k \,, \tag{17}$$

$$z_{k+1} = N^{-1} r_{k+1},$$
 (18)

$$\boldsymbol{\delta}_{k+1} = \langle \boldsymbol{r}_{k+1}, \boldsymbol{z}_{k+1} \rangle, \qquad (19)$$

$$\boldsymbol{\beta}_{k} = \frac{\boldsymbol{\delta}_{k+1}}{\boldsymbol{\delta}_{k}}, \qquad (20)$$

$$\boldsymbol{p}_{k+1} = -\boldsymbol{z}_{k+1} + \boldsymbol{\beta}_k \boldsymbol{p}_k, \qquad (21)$$

$$k = k + 1. \tag{22}$$

达到停止准则时,停止迭代。一般可以设置停止准则为 r_k 范数小于某给定常数,如 $||r_k|| < 0.001$ 。

5 变参式改进算法

5.1 传统算法计算不足之处

当边界条件取周期边界条件时,取**D**为周期边界条件的负拉普拉斯矩阵L,L可以表示为一个 B×B 维的分块矩阵:

$$L = \begin{bmatrix} L_0 & -I & \Theta & \cdots & -I \\ -I & L_0 & -I & \cdots & \Theta \\ \Theta & -I & L_0 & \cdots & \Theta \\ \vdots & \vdots & \vdots & \vdots \\ -I & \Theta & \Theta & \cdots & L_0 \end{bmatrix},$$
(23)

式中I为 $A \times A$ 的单位矩阵, Θ 为 $A \times A$ 的零矩阵, L_0 为 $A \times A$ 的矩阵:

$$L_{0} = \begin{bmatrix} 4 & -1 & 0 & \cdots & -1 \\ -1 & 4 & -1 & \cdots & 0 \\ 0 & -1 & 4 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & 0 & 0 & \cdots & 4 \end{bmatrix}.$$
 (24)

当边界条件为零边界条件时,最佳预处理矩阵(PM)效果最好^[8]。而对于周期边界条件,则表现不佳。 经过观察与实验,提出新的预处理矩阵,取 $N=M=H^{T}H+\alpha L$ 。

调用 Matlab 函数 psf= fspecial('motion', 71, 56);产生运动退化点扩展函数,调用 g=imfilter(f,psf, 'conv', 'same', 'circular')产生退化模糊图像,取周期边界条件。调用 g=imnoise(g, 'gaussian',0, 1. e-3) 加入均值为零,方差为 1×10^{-3} 的高斯白噪声,以 256 pixel×256 pixel 的 Lena, Cameraman 灰度图像为测试 对象,参数取值 α =0.01,运行预处理共轭梯度法,比较预处理矩阵不同时的图像复原效果(图 1)。

Fig. 1 Image restoration comparison with different preconditioning matrices (PMs). (a) Optimal PM for Lena;(b) new PM for Lena; (c) optimal PM for Cameraman; (d) new PM for Cameraman

调用 Matlab 函数 psf=fspecial('gaussian', [21,28],10)产生高斯退化点扩展函数,调用 g=imfilter (f,psf,'conv','same','circular')产生退化模糊图像,取周期边界条件。调用 g=imnoise(g,'gaussian',

0, 1. e-3)加入均值为零,方差为 1×10^{-3} 的高斯白噪声,以 256 pixel \times 256 pixel 的 Lena, Cameraman 灰度图 像为测试对象,运行预处理共轭梯度法,比较 α 取值不同时的图像复原效果。

从图 2 中可以看到,当 α 取值大时,复原图像含有的噪声很少,但是同时也丢失了很多细节,看起来较为 平滑,当 α 取值小时,复原图像含有很多噪声,但是同时也强化了很多细节。不能够两全其美。

图 2 不同正则化参数图像复原效果比较

Fig. 2 Image restoration comparison with different regularization parameters

5.2 变参式计算方法

由于传统算法在计算中的不足,本文提出变参式计算方法,首先 α 取较大值,用来抑制复原图像中的噪声。运行一次 PCG 算法,得出收敛的结果 f。与模糊矩阵 H 卷积计算,修正初始梯度 r。接近真实值。再以此时的 f,r。为初值,再次运行 PCG 算法。然后 α 取较小值,用来增强复原图像中的细节。循环往复,得到收敛结果,既减小了噪声又强化了细节。可以表示为:

1) 给定初值: $\alpha = \alpha_0, 0 < k < 1, f_0 = 0, r_0 = -H^Tg;$

2) 运行 PCG 算法,得出收敛结果 f;

3) $f_0 = f_{\alpha} = \alpha \times k$, $r_0 = M f_0 - H^{\mathrm{T}} g$, $\mathfrak{L} \square 2$).

6 实验结果与分析

为了验证本文算法的有效性,进行了仿真实验,与当前流行的 ForWaRD 算法^[9]、SA-DCT 算法^[10]和 BM3D 算法^[11]进行了比较。采用峰值信噪比(PSNR)作为图像复原性能的客观评价尺度^[12]。选取下面的 点扩展函数,比较几种算法的复原性能:

PSF1: psf = fspecial('gaussian', [80,80], 80);

PSF2: psf =fspecial('motion', 270, 200);

PSF3: psf = fspecial(' average', [100, 100]);

PSF4: psf =fspecial('disk',50)。

调用 g=imfilter(f,psf,'conv','same','circular')产生退化模糊图像,取周期边界条件。调用 g= imnoise(g,'gaussian',0,1.e-3)加入均值为零,方差为 1×10^{-3} 的高斯白噪声,以 256 pixel×256 pixel 的 Lena,Cameraman 灰度图像为测试对象,最大迭代次数取为10000次,迭代停止准则取为两次循环计算所得 的相对误差之差小于 1×10^{-7} ,认为算法收敛,跳出循环。本文算法中参数取值为 $\alpha_0 = 5, k = 0.7$ 。所有数值 运算在 Windows7 平台下,Matlab V 7.10 上实现;计算机为 Intel 酷睿 i3 530 双核 CPU,2GB DDR3 1333 内 存配置的台式机。

表1为对于不同种类的点扩展函数,本文改进算法与当前流行的图像复原算法的客观评价比较。 图 3~6为对于不同种类的点扩展函数,本文改进算法与当前流行的图像复原算法的退化图像复原效果 比较。 激光与光电子学进展

表 1 几种算法的图像复原性能比较

Table 1 Image restoration comparison of several algorithms

Blur	PSF1		PSF2		PSF3		PSF4	
	PSNR	Time /s						
			L	ena				
Proposed	19.16	4.07	18.89	3.79	18.51	4.02	19.01	3.74
ForWaRD	14.75	0.23	11.42	0.24	13.79	0.26	14.32	0.23
SA-DCT	15.34	1.05	15.47	1.00	15.71	0.97	15.18	0.97
BM3D	18.99	2.03	17.39	2.32	18.26	2.02	18.37	2.00
			Came	eraman				
Proposed	17.90	3.74	18.22	3.57	17.70	3.76	18.06	3.76
ForWaRD	16.38	0.24	13.74	0.24	15.78	0.25	16.17	0.23
SA-DCT	15.59	0.97	15.16	0.97	15.54	0.97	15.39	0.97
BM3D	17.78	1.90	15.70	2.14	17.53	1.93	18.03	1.91

图 3 PSF1 退化图像复原效果比较

Fig. 3 Deblurring results comparision of the image by several algorithms for PSF1

图 4 PSF2 退化图像复原效果比较

Fig. 4 Deblurring results comparison of the images by several algorithms for PSF2

Fig. 5 Deblurring results comparision of the images by several algorithms for PSF3

图 6 PSF4 退化图像复原效果比较

Fig. 6 Deblurring results comparison of the images by several algorithms for PSF4

7 结 论

针对周期边界条件下 Tikhonov 正则化的预处理共轭梯度图像复原算法,提出了变化正则化参数的改进方法以及新的预处理矩阵。正则化参数先取较大值,抑制复原图像中的噪声,得出收敛的结果来修正初始梯度;再取较小值,用来增强复原图像中的细节。实验结果表明:对于各种退化造成的模糊图像,本文算法复原效果优于当前流行的图像复原算法。

参考文献

- 1 Shao Mingsheng, Wang Qihua. Blurred image restoration based on frog leaping algorithm[J]. Laser & Optoelectronics Progress, 2012, 49(2): 021003
- 邵明省,王其华.基于蛙跳算法的模糊图像复原[J].激光与光电子学进展,2012,49(2):021003
- 2 Zhao Yanyan, Yuan Yan, Su Lijuan. Point spread function estimation of blurring due to uniform linear motion in arbitrary direction[J]. *Chinese J. Lasers*, 2012, **39**(8): 0809003

赵妍妍,袁 艳,苏丽娟.任意方向匀速直线运动模糊的点扩展函数估计[J].中国激光,2012,39(8):0809003

- 3 Mingjian Sun, Naizhang Feng, Yi Shen *et al.*. Photoacoustic image reconstruction based on Bayesian compressive sensing algorithm[J]. *Chin. Opt. Lett.*, 2011, **9**(6): 061002
- 4 M. Figueiredo, J. Bioucas-Dias, R. Nowak. Majorization minimization algorithms for wavelet-based image restoration[J]. *IEEE Trans. Image Processing*, 2007, **16**(12): 2980~2991
- 5 Tao Xiaoping, Feng Huajun, Zhao Jufeng *et al.*. A total-variation majorization-minimization sectioned restoration algorithm with gradient ringing metric image quality assessment[J]. Acta Optica Sinica, 2009, **29**(11): 3025~3030

陶小平, 冯华君, 赵巨峰等. 结合基于梯度的振铃评价算法的总变分最小化图像分块复原法[J]. 光学学报, 2009, **29**(11): 3025~3030

6 Zhang Bin, Song Yang, He Anzhi. Tikhonov regularization method for deflectometric tomographic reconstruction[J]. Acta Optica Sinica, 2007, **27**(5): 853~858

张 斌, 宋 旸, 贺安之. 光偏折层析的 Tikhonov 正则化重建技术[J]. 光学学报, 2007, 27(5): 853~858

7 Jorge Nocedal, Stephen J. Wright. Numerical Optimization (2nd ed.) [M]. Berlin: Springer Verlag, 2006

8 C. R. Vogel. Computational Methods for Inverse Problems[M]. Philadelphia: SIAM, 2002

- 9 R. Neelamani. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems[J]. *IEEE Trans. Signal Processing*, 2004, **52**(2): 418~433
- 10 Alessandro Foi, Kostadin Dabov, Vladimir Katkovnik et al.. Shape-adaptive DCT for denoising and image reconstruction [C]. SPIE, 2006, 6064: 60640N
- 11 K. Dabov, A. Foi, V. Katkovnik *et al.*. Image restoration by sparse 3D transform-domain collaborative filtering[C]. *SPIE*, 2008, **6812**;68121D
- 12 Liu Yanyan, Zhao Yingchao, Hu Tao. Quality assessment of laser disturbing images based on wavelet transform[J]. Laser & Optoelectronics Progress, 2012, 49(11): 111001

刘严严, 赵英超, 胡 涛. 基于小波变换的激光干扰图像质量评价[J]. 激光与光电子学进展, 2012, 49(11): 111001